Tag Archives: fiber optic

1000+ fiber connections = one optical flex circuit?

If you have ever been to data center, then you must have a deep understanding of the following cabling scenarios.

data center

If an optical circuit can improve such a cabling environment, are you interested?

Optical circuit

The optical fiber flex circuit is independently developed by HYC, which provides a solution of efficient routing, high-core number connection, and complete customization. It can be widely used in applications , including multi-core fiber cross transmission, switch equipment, optical backplane interconnection, card-to-card connection, rack-to-rack connection, wavelength selection switch, and high-density fiber management.

A single customized optical fiber flex circuit can replaces the complex bundled jumper connections, which can significantly save equipment space, improve the smoothness of airflow between equipment, and improve the working environment of sensitive components.

The optical circuit can realize the output/input of any connector, as well as direct connection or fusion of the connector; support single-mode/multi-mode and single-core/multi-core fiber. As long as it is designed in advance, it can theoretically support the connection of any number of cores and any polarity link.

Optical circuit

HYC’s optical fiber lines use environmentally friendly materials that meet the application of industrial environments, and perform insertion loss, return loss and polarity tests before leaving the factory to ensure that each product can meet the optical characteristic requirements and link polarity requirements designed by the customer. Some forms of products adopt high-efficiency fully automatic production machines, which not only improve production efficiency, but also make the products more compact and beautiful. Machine production can ensure that the direction of each line is accurate and the polarity is correct.

At present, HYC can provide three types of optical circuit, and customers can choose according to the applications, core number, environment, space and other requirements.

Optical circuit

Know the type of fiber, fiber cable, jumper, pigtail, and connector

To understand the types of optical fibers, optical cables, jumpers, connectors, and adapters, you first need to know the relationship between these products.


optical fibers, optical cables, jumpers, connectors, and adapters
Continue reading

HYC Launched A Full Range of High-speed Fiber Array Subassembly

With the development of ultra-high-speed and integrated optical communications, optical transceiver modules are also expected to adopt smaller and more integrated solutions, which have high demand for parallel high-speed optical subassembly. Due to the high cost caused by strict material usage and processing technology, the optical fiber array has not been widely used for 10G transmission. With the rapid advance of 400G and 800G high-speed transmission, FA with high-density packaging can be said to be a more ideal solution.

Optical fiber arrays are most commonly used in the packaging of planar optical waveguide splitters (PLC) and arrayed waveguide gratings (AWG). With the explosive growth of data flow, the demand for optical fiber arrays in data centers and 5G commercial applications is growing rapidly, and FA has become more and more widely used in MEMS systems, sensors, silicon photonics and other fields.

Continue reading

The applications of Raman WDM

Distributed optical fiber sensing technology
Optical fiber sensing technology is a new type of sensing technology that developed rapidly with the development of optical fiber communication technology in the 1970s. It uses light waves as a carrier and optical fiber as a medium to sense and transmit external measured signals. Compared with conventional sensors, optical fiber sensors have many advantages such as high measurement sensitivity, anti-electromagnetic interference, anti-radiation, high pressure resistance, corrosion resistance, small size, light weight, and adaptation to harsh environments. The optical fiber component itself is both a detection element and a transmission element , which can connect many optical fiber sensing units on the optical fiber trunk to form a large-scale remote sensing system for distributed monitoring and measurement.

Continue reading

OFC2020: How has fiber optic communication changed us?

In OFC 2020, the most exciting moment must be the commermorative event. Fifty years ago, two breakthrough technologies that laid the foundation for this year’s optical communications were born: low-loss optical fiber and room-temperature semiconductor lasers. For the first time in the past 20 years, OFC arranged a special celebration after the morning conference speech. David F. Welch, Chief Innovation Officer of Infinera, who will lead the audience to recall the 50 years of optical fiber communications and look forward to the future of optical communications.

Continue reading

Fiber Optic Connectors – Standards to Ensure Physical Contact

As we know, physical contact is most important to ensure low IL and high RL for fiber connection. The evolution of endface polishing types experiences physical contact (PC), ultra physical contact (UPC) and angled physical contact (APC), as shown in Fig.1. All the endfaces are spherically polished. The UPC connector has a smaller radius of curvature than the PC connector. For the APC connector, the sphere surface is usually tilted by an angle of 8°. The RL guaranteed by PC, UPC and APC is 40dB, 55dB and 65dB, respectively.

Fig.1 Polish types for the endfaces of fiber optic connectors
Continue reading

Fiber Optic Connectors—Basics for Optical Fiber Connection

Fiber optic connectors are the most basic optical passive components for optical fiber communication systems. The basic specification requirements for them are low insertion loss (IL) and high return loss (RL), i.e. low back reflection (BR). However, as the most widely employed components, low cost and easy connection are equal important as the specifications.

Alignment of Optical Fibers
The core size of the single mode fiber (SMF) is about 8~10μm. The two connected fibers must be precisely aligned to ensure low loss. Fig.1 shows how much the lateral offset between two optical fibers influence the IL. The curve is exponential. A small lateral offset such as 2.4μm will introduce IL of 1dB. Thus the lateral offset between the two fibers must be kept <0.5μm for SMF fiber optic connectors.

Continue reading