Tag Archives: DWDM

Passive Optical Devices for 5G Application(Part II)

With the rise of 5G technologies and massive deployment of 5G base stations, wireless access of terminals with high speed and large capacity is realized. Meanwhile, the traffic in optical fiber network increases rapidly. It is predicted that the current optical fiber network will become the bottleneck of information exchange in the future 12-18 months. The upgrading of optical fiber network is urgent. The representative trend is that the technologies for long-haul network (LHN) will be sunk to metropolitan area network (MAN), including DWDM (Dense Wavelength Division Multiplexing), ROADM (Reconfigurable Optical Add-Drop Multiplexer) and coherent receiving techniques. This paper discusses some of the passive optical devices for the coming 5G applications.

Tunable Optical Filter (TOF) for Coherent Receiving
In DWDM optical network, tunable optical filter (TOF), as one of the most important dynamic optical devices, is used to realize such functions as channel selection, optical performance monitoring (OPM) and optical channel monitoring (OCM) in the wavelength domain. The requirements of optical network for TOF include low loss, wide tuning range and good filtering characteristics.

Continue reading

WDM Devices — AWG with Flat Response

Why Is Flat Response Required?
In the all optical network (AON), the optical signals passed tens of nodes before reaching the destination node, as shown in Fig.1. The ROADM nodes are usually composed of wavelength selective switches (WSS), multiplexers/demultiplexers and optical switches. The wavelength multiplexers/demultiplexers are optical filters, including TFF-based WDM devices, arrayed waveguide gratings (AWG) and optical interleavers.

Continue reading

WDM Devices — Arrayed Waveguide Grating

Why is AWG demanded?
As we know, DWDM technology enables transmission of dozens of wavelengths in a single fiber, which expands the capacity of optical fiber communication enormously. The first mux/demux modules for DWDM system are based on thin-file filters (TFFs), as shown in Fig.1 and Fig.2. Both are designed in serial structure. Different wavelengths travel different number of devices in the module and result in different power loss. The loss uniformity degrades with increment of port number. Meanwhile, the maximum loss at the last port is another limitation on the port number. Thus the TFF-based WDM modules are usually limited to be ≤16 channels.

Continue reading

WDM Devices — TFF-based WDM Devices

As we know, optical fiber communication is one of the enabling technologies for Internet and changed the world. The advantage of optical fiber communication is to transmit dozens of wavelengths in a single optical fiber, which is called wavelength-division multiplexing (WDM). The basic devices for WDM transmission are optical filters, which can be realized by fused biconical taper (FBT), thin film filter (TFF), arrayed waveguide grating (AWG) and optical interleaver. TFF and AWG are most commonly used in the WDM system. This paper discusses TFF-based WDM devices.

Thin Film Filter
Fabry-Perot interferometer (FPI) is a commonly used interferometer for spectrum filtering. The structure of a FPI is shown in Fig.1, which consists of two glass plates spaced by a spacer with precise thickness. The inner surfaces of the plates are coated for partial reflection and the outer surfaces are usually anti-reflection (AR) coated.

Continue reading